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1. Introduction

1.1. Statement of the Problem. On the segment I = [a, b] consider the system of
linear functional differential equations

x′
i(t) =

n∑

k=1

`ik(xk)(t) + qi(t) (i = 1, . . . , n) (1)

and its particular case

x′
i(t) =

n∑

k=1

pik(t)xk(τik(t)) + qi(t) (i = 1, . . . , n) (1′)

with the boundary conditions

b∫

a

xi(t)dϕi(t) = ci (i = 1, . . . , n). (2)

Here `ik : C(I; R) → L(I; R) are linear bounded operators, pik and qi ∈ L(I; R),
ci ∈ R (i, k = 1, . . . , n), ϕi : I → R (i = 1, . . . , n) are the functions with bounded
variations, and τik : I → I (i, k = 1, . . . , n) are measurable functions.

The simple but important particular case of the conditions (2) are the two–point
boundary conditions

xi(b) = λixi(a) + ci (i = 1, . . . , n), (3)
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the periodic boundary conditions

xi(b) = xi(a) + ci (i = 1, . . . , n), (4)

and the initial conditions

xi(t0) = ci (i = 1, . . . , n), (5)

where t0 ∈ I and λi ∈ R (i = 1, . . . , n).
By a solution of the system (1) (of the system (1′)) we understand an absolutely

continuous vector function (xi)
n
i=1 : I → R which satisfies the system (1) (the system

(1′)) almost everywhere on I. A solution of the system (1) (of the system (1′)) which
satisfies the condition (j), where j ∈ {2, 3, 4, 5}, is said to be a solution of the problem
(1), (j).

As for the differential system

x′
i(t) =

n∑

k=1

pik(t)xk(t) + qi(t) (i = 1, . . . , n),

the boundary value problems have been studied in detail (see [4,5,8–10] and references
therein). There are also a lot of interesting results concerning the problems (1), (k)
and (1′), (k) (k = 2, 3, 4, 5) (see [2,3,6,7,11–13]). In this paper, the optimal conditions
for the unique solvability of the problems (1), (2) and (1′), (2) are established which
are different from the previous results.

1.2. Basic Notation. Throughout this paper the following notation and terms are
used:

I = [a, b], R =] −∞, +∞[, R+ = [0, +∞[;
δik is the Kronecker’s symbol, i.e.,

δik =

{
1 for i = k,

0 for i 6= k;

R
n is the space of n-dimensional column vectors x = (xi)

n
i=1 with the components

xi ∈ R (i = 1, . . . , n) and the norm

‖x‖ =

n∑

i=1

|xi|;

R
n×n is the space of n × n-matrices X = (xik)

n
i,k=1 with the components xik ∈ R

(i, k = 1, . . . , n) and the norm

‖X‖ =
n∑

i,k=1

|xik|;
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R
n
+ = {(xi)

n
i=1 ∈ R

n : xi ≥ 0, i = 1, . . . , n};
R

n×n
+ = {(xik)

n
i,k=1 ∈ R

n×n : xik ≥ 0, i, k = 1, . . . , n};
the inequalities between vectors x and y ∈ R

n, and between matrices X and
Y ∈ R

n×n are considered componentwise, i.e.,

x ≤ y ⇔ (y − x) ∈ R
n
+, X ≤ Y ⇔ (Y − X) ∈ R

n×n
+ ;

r(X) is the spectral radius of the matrix X ∈ R
n×n;

X−1 is the inverse matrix to X ∈ R
n×n;

E is the unit matrix;
C(I; Rn) is the space of continuous1 vector functions x : I → R

n with the norm

‖x‖C = sup{‖x(t)‖ : t ∈ I};

C(I; Rn
+) = {x ∈ C(I; Rn) : x(t) ∈ R

n
+ for t ∈ I};

L(I; Rn) is the space of summable vector functions x : I → R
n with the norm

‖x‖L =

∫

I

‖x(t)‖dt;

L(I; Rn
+) = {x ∈ L(I; Rn) : x(t) ∈ R

n
+ for almost all t ∈ I};

C̃(I; Rn) is the space of absolutely continuous vector functions x : I → R
n with

the norm

‖x‖ eC = ‖x‖C + ‖x′‖L;

PI is the set of linear operators ` : C(I; R) → L(I; R) mappings C(I; R+) into
L(I; R+);

LI is the set of linear continuous operators ` : C(I; R) → L(I; R), for each of them
there exists an operator ` ∈ PI such that for any u ∈ C(I; R) the inequalities

|`(u)(t)| ≤ `(|u|)(t)

holds almost everywhere on I;
for any u ∈ L(I; R)

η(u)(t, s) =

s∫

t

u(ξ)dξ.

1The vector function x = (xi)
n

i=1
: I → R

n is said to be continuous, bounded, summable, etc., if
the components xi : I → R (i = 1, . . . , n) have such a property.
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1.3. Criterion on the Unique Solvability of the Problem (1), (2). The results
in general theory of boundary value problems (see [12], Theorems 1.1 and 1.4) yield
the following

Theorem 1. If `ik ∈ LI (i, k = 1, . . . , n), then the boundary value problem (1), (2)
with arbitrary ci ∈ R and qi ∈ L(I; R) (i = 1, . . . , n) is uniquely solvable if and only
if the corresponding homogeneous problem

x′
i(t) =

n∑

k=1

`ik(xk)(t) (i = 1, . . . , n), (10)

b∫

a

xi(s)dϕi(s) = 0 (i = 1, . . . , n) (20)

has only the trivial solution. If the latter condition is fulfilled, then the solution of
the problem (1), (2) admits the representation

xi(t) =
n∑

k=1

yik(t)ck + gi(q1, . . . , qn)(t) (i = 1, . . . , n), (6)

where yik ∈ C̃(I; R) (i, k = 1, . . . , n), and gi : L(I; Rn) → C̃(I; R) (i = 1, . . . , n) are

linear continuous operators such that the vector function (
n∑

k=1

yikck)
n
i=1 is the solution

of the problem (10), (2), and the vector function (gi(q1, . . . , qn))n
i=1 is the solution of

the problem (1), (20).

Remark 1. The operator (gi)
n
i=1 : L(I; Rn) → C̃(I; Rn) is called the Green’s operator

of the problem (10), (20). According to Danford–Pettis Theorem (see [1], Ch. XI, §1,
Theorem 6), there exists the unique matrix function G = (gik)

n
i,k=1 : I × I → R

n×n

with the essentially bounded components gik : I × I → R (i, k = 1, . . . , n) such that

gi(q1, . . . , qn)(t) ≡
n∑

k=1

b∫

a

gik(t, s)qk(s)ds (i = 1, . . . , n).

Consequently, the formula (6) can be rewritten as follows:

xi(t) =

n∑

k=1

yik(t)ck +

n∑

k=1

b∫

a

gik(t, s)qk(s)ds (i = 1, . . . , n). (6′)

This formula is called the Green’s formula for the problem (1), (2), and the matrix
G is called the Green’s matrix of the problem (10), (20).
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The aim of the following is to find effective criteria for the unique solvability of
the above formulated problems. With a view to achieve this goal, we will need one
lemma which is proved in Section 2.

2. Lemma on Boundary Value Problem for the System of Functional

Differential Equations

Consider the system of differential inequalities

|y′
i(t) − `i(yi)(t)| ≤

n∑

k=1

hik(t)‖yk‖C (i = 1, . . . , n) (7)

with the boundary conditions

b∫

a

yi(s)dϕi(s) = 0 (i = 1, . . . , n), (8)

where

`i ∈ LI , hik ∈ L(I; R+) (i, k = 1, . . . , n),

ci ∈ R (i = 1, . . . , n), and ϕi : I → R (i = 1, . . . , n) are functions with bounded
variations.

Along with (7), (8) for every i ∈ {1, . . . , n} consider the homogeneous problem

y′(t) = `i(y)(t),

b∫

a

y(s)dϕi(s) = 0. (9i)

Lemma 1. Let for every i ∈ {1, . . . , n} the homogeneous problem (9i) have only the
trivial solution and there exist a matrix A = (aik)

n
i,k=1 ∈ R

n×n
+ such that

r(A) < 1 (10)

and

b∫

a

|gi(t, s)|hik(s)ds ≤ aik for t ∈ I (i, k = 1, . . . , n), (11)

where gi is the Green’s function of the problem (9i). Then the problem (7), (8) has
only the trivial solution.
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Proof. Let (yi)
n
i=1 be a solution of (7), (8). Then for every i ∈ {1, . . . , n}, the

function yi is the solution of the problem

y′(t) − `i(y)(t) = qi(t),

b∫

a

y(s)dϕi(s) = 0, (12)

where

qi(t)
def
= y′

i(t) − `i(yi)(t). (13)

By the Green’s formula we have

yi(t) =

b∫

a

gi(t, s)qi(s)ds for t ∈ I (i = 1, . . . , n), (14)

Due to (7) and (13),

b∫

a

|gi(t, s)||qi(s)|ds ≤
n∑

k=1

b∫

a

|gi(t, s)|hik(s)‖yk‖Cds for t ∈ I (i = 1, . . . , n).

In view of (11) and the last inequalities from (14) we obtain

|yi(t)| ≤

n∑

k=1

aik‖yk‖C for t ∈ I (i = 1, . . . , n). (15)

Consequently, (15) yields

(E − A)
(
‖yi‖C

)n

i=1
≤ 0. (16)

Since A is a nonnegative matrix satisfying (10), there exists the nonnegative inverse
matrix (E − A)−1. Then by (16) we obtain yi(t) ≡ 0 (i = 1, . . . , n). 2

3. Existence and Uniqueness Theorems

Throughout the following we will assume that `ik ∈ LI (i, k = 1, . . . , n) and for
any u ∈ C(I; R) the inequalities

|`ik(u)(t)| ≤ `ik(|u|)(t) (i, k = 1, . . . , n)

hold almost everywhere on I, where `ik ∈ PI (i, k = 1, . . . , n).

Theorem 2. Let there exist operators `i, ˜̀ik ∈ LI (i, k = 1, . . . , n), functions hik ∈
L(I; R+) (i, k = 1, . . . , n), and a matrix A = (aik)

n
i,k=1 ∈ R

n×n
+ satisfying (10) such

that:
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(i) any solution of the system (10) is also a solution of the system

x′
i(t) = `i(xi)(t) +

n∑

k=1

˜̀
ik(xk)(t) (i = 1, . . . , n); (17)

(ii) for any y ∈ C̃(I; R), the inequalities

|˜̀ik(y)(t)| ≤ hik(t)‖y‖C (i, k = 1, . . . , n) (18)

holds almost everywhere on I;
(iii) for every i ∈ {1, . . . , n} the problem (9i) has only the trivial solution and the

inequalities (11) are fulfilled, where gi is the Green’s function of the problem (9i).
Then the problem (1), (2) has a unique solution.

Proof. Let (yi)
n
i=1 be a solution of the problem (10), (20). Then by (17) and (18) it

is also a solution of the problem (7), (8). Now it is obvious that all the assumptions
of Lemma 1 are fulfilled. Therefore yi(t) ≡ 0 (i = 1, . . . , n). Thus the homogeneous
problem (10), (20) has only the trivial solution and consequently, by Theorem 1, the
problem (1), (2) has a unique solution. 2

Corollary 1. Let there exist operators `i ∈ LI (i = 1, . . . , n), functions hik ∈
L(I; R+) (i, k = 1, . . . , n), and a matrix A = (aik)

n
i,k=1 ∈ R

n×n
+ satisfying (10) such

that:
(i) for any y ∈ C̃(I; R), the inequalities

|`ii(y)(t) − `i(y)(t)| ≤ hii(t)‖y‖C (i = 1, . . . , n),

|`ik(y)(t)| ≤ hik(t)‖y‖C (i 6= k; i, k = 1, . . . , n)

holds almost everywhere on I;
(ii) for every i ∈ {1, . . . , n} the problem (9i) has only the trivial solution and the

inequalities (11) are fulfilled, where gi is the Green’s function of the problem (9i).
Then the problem (1), (2) has a unique solution.

Proof. Put
˜̀
ii(y)(t) ≡ `ii(y)(t) − `i(y)(t) (i = 1, . . . , n),

˜̀
ik(y)(t) ≡ `ik(y)(t) (i 6= k; i, k = 1, . . . , n).

Then the assumptions of Theorem 2 are fulfilled. Consequently, the problem (1), (2)
has a unique solution. 2

Corollary 2. Let

b∫

a

exp




s∫

a

`ii(1)(ξ)dξ


dϕi(s) 6= 0 (i = 1, . . . , n) (19)
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and there exist a matrix A = (aik)
n
i,k=1 ∈ R

n×n
+ satisfying (10) such that (11) is

fulfilled, where gi is the Green’s function of the problem

y′(t) = `ii(1)(t)y(t),

b∫

a

y(s)dϕi(s) = 0 (20i)

and

hik(t) = `ii

(
|η(`ik(1))(t, ·)|

)
(t) + (1 − δik)`ik(1)(t) (i, k = 1, . . . , n). (21)

Then the problem (1), (2) has a unique solution.

Proof. The condition (19) is necessary and sufficient for the problem (20i) to have
only the trivial solution for every i ∈ {1, . . . , n}.

On the other hand, every solution (xi)
n
i=1 of the system (10) satisfies

x′
i(t) = `ii(1)(t)xi(t) + `ii(xi(·) − xi(t))(t) +

n∑

k=1

(1 − δik)`ik(xk)(t) =
(22)

= `ii(1)(t)xi(t) +

n∑

k=1

[
`ii

(
|η(`ik(xk))(t, ·)|

)
(t) + (1 − δik)`ik(xk)(t)

]
(i = 1, . . . , n).

Put

`i(y)(t) ≡ `ii(1)(t)y(t) (i = 1, . . . , n),

˜̀
ik(y)(t) ≡ `ii

(
|η(`ik(y))(t, ·)|

)
(t) + (1 − δik)`ik(y)(t) (i, k = 1, . . . , n).

Then any solution of the system (10) is also a solution of the system (17). Now it
is obvious that all the assumptions of Theorem 2 are fulfilled. Consequently, the
problem (1), (2) has a unique solution. 2

If

`ik(y)(t) ≡ piky(τik(t)) (i, k = 1, . . . , n),

then the system (1) has the form (1′). In that case

`ik(y)(t) ≡ |pik|y(τik(t)) (i, k = 1, . . . , n),

`ii

(
|η(`ik(1))(t, ·)|

)
(t) ≡

∣∣∣∣∣∣
pii(t)

τii(t)∫

t

|pik(s)|ds

∣∣∣∣∣∣
.

Therefore from Corollary 2 it follows
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Corollary 2′. Let

b∫

a

exp




s∫

a

pii(ξ)dξ



dϕi(s) 6= 0 (i = 1, . . . , n)

and there exist a matrix A = (aik)
n
i,k=1 ∈ R

n×n
+ satisfying (10) such that (11) is

fulfilled, where gi is the Green’s function of the problem

y′(t) = pii(t)y(t),

b∫

a

y(s)dϕi(s) = 0

and

hik(t) =

∣∣∣∣∣∣
pii(t)

τii(t)∫

t

|pik(s)|ds

∣∣∣∣∣∣
+ (1 − δik)|pik(t)| (21′)

(i, k = 1, . . . , n).

Then the problem (1′), (2) has a unique solution.

Corollary 3. Let λi 6= 1, µi = max{1, |λi|} (i = 1, . . . , n) and the matrix

A =


 µi

|1 − λi|

b∫

a

`ik(1)(s)ds




n

i,k=1

satisfies (10). Then the problem (1), (3) has a unique solution.

Proof. Since λi 6= 1 (i = 1, . . . , n), for every i ∈ {1, . . . , n} the problem

y′(t) = 0, y(b) = λiy(a) (23i)

has only the trivial solution. Moreover, the Green’s function of (23i) is of the form

gi(t, s) =

{
λi

λi−1
for a ≤ s ≤ t ≤ b,

1
λi−1

for a ≤ t < s ≤ b.

Put

`i(y)(t) ≡ 0, ˜̀
ik(y)(t) ≡ `ik(y)(t), hik(t) ≡ `ik(1)(t) (i, k = 1, . . . , n).

Then all the assumptions of Theorem 2 are fulfilled. Consequently, the problem (1),
(3) has a unique solution 2
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Corollary 3′. Let λi 6= 1, µi = max{1, |λi|} (i = 1, . . . , n) and the matrix

A =


 µi

|1 − λi|

b∫

a

|pik(s)|ds




n

i,k=1

satisfies (10). Then the problem (1′), (3) has a unique solution.

Corollary 4. Let

b∫

a

`ii(1)(s)ds 6= 0 (i = 1, . . . , n) (24)

and there exist a matrix A = (aik)
n
i,k=1 ∈ R

n×n
+ satisfying (10) such that (11) is

fulfilled, where gi is the Green’s function of the problem

y′(t) = `ii(1)(t)y(t), y(b) = y(a), (25i)

and hik is defined by (21). Then the problem (1), (4) has a unique solution.

Proof. The condition (24) is necessary and sufficient for the problem (25i) to have
only the trivial solution for every i ∈ {1, . . . , n} and its Green’s function is of the
form

gi(t, s) =





(
1 − exp(

∫ b

a
`ii(1)(ξ)dξ)

)−1
exp(

∫ t

s
`ii(1)(ξ)dξ)

for a ≤ s ≤ t ≤ b,(
exp(−

∫ b

a
`ii(1)(ξ)dξ)− 1

)−1
exp(

∫ t

s
`ii(1)(ξ)dξ)

for a ≤ t < s ≤ b.

(26i)

Now it is obvious that all the assumptions of Corollary 2 are fulfilled. Consequently,
the problem (1), (4) has a unique solution. 2

Corollary 4′. Let
b∫

a

pii(s)ds 6= 0 (i = 1, . . . , n) (24′)

and there exist a matrix A = (aik)
n
i,k=1 ∈ R

n×n
+ satisfying (10) such that (11) is

fulfilled, where gi is the Green’s function of the problem

y′(t) = pii(t)y(t), y(b) = y(a),

and hik is defined by (21′). Then the problem (1′), (4) has a unique solution.
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Corollary 5. Let (24) be fulfilled and there exist σi ∈ {−1, 1}, αi ∈]0, +∞[, αik ∈
[0, +∞[ (i, k = 1, . . . , n) such that the real part of every eigenvalue of the matrix
A = (−δikαi + αik)

n
i,k=1 is negative and the inequalities

σi`ii(1)(t) ≤ −αi (i = 1, . . . , n), (27)

`ii

(
|η(`ik(1))(t, ·)|

)
(t) + (1 − δik)`ik(1)(t) ≤ αik (28)

(i, k = 1, . . . , n)

hold almost everywhere on I. Then the problem (1), (4) has a unique solution.

Proof. At first note that according to Theorems 1.13 and 1.18 in [10] the negativeness
of real parts of the eigenvalues of the matrix A yields the inequality

r(A) < 1, (29)

where

A =

(
αik

αi

)n

i,k=1

.

On the other hand, from (27) it follows that for every i ∈ {1, . . . , n} the problem
(25i) has only the trivial solution and its Green’s function gi is given by (26i). Put

∆i(s, t) = exp(−σiαi(t − s)) (i = 1, . . . , n).

Then for every i ∈ {1, . . . , n} from (26i) and (27) we obtain

|gi(t, s)| ≤

{[
σi(1 − ∆i(a, b))

]−1
∆i(s, t) for a ≤ s ≤ t ≤ b,[

σi(1 − ∆i(a, b))
]−1

∆i(a, b)∆i(s, t) for a ≤ t < s ≤ b.
(30)

Define the functions hik by (21). Then from (28) and (30) we get

b∫

a

|gi(t, s)|hik(s)ds ≤ (31)

≤ αik

[
σi(1 − ∆i(a, b))

]−1




t∫

a

∆i(s, t)ds + ∆i(a, b)

b∫

t

∆i(s, t)ds



 =

=
αik

αi

[
1 − ∆i(a, b)

]−1(
1 − ∆i(a, t) + ∆i(a, b)∆i(b, t) − ∆i(a, b)

)
=

=
αik

αi

(i, k = 1, . . . , n).

Taking into account (29) we conclude that all the assumptions of Corollary 2 are
fulfilled. Consequently, the problem (1), (4) has a unique solution. 2
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Corollary 5′. Let (24′) be fulfilled and there exist σi ∈ {−1, 1}, αi ∈]0, +∞[, αik ∈
[0, +∞[ (i, k = 1, . . . , n) such that the real part of every eigenvalue of the matrix
A = (−δikαi + αik)

n
i,k=1 is negative and the inequalities

σipii(t) ≤ −αi (i = 1, . . . , n),

∣∣∣∣∣∣
pii(t)

τii(t)∫

t

|pik(s)|ds

∣∣∣∣∣∣
+ (1 − δik)|pik(t)| ≤ αik

(i, k = 1, . . . , n)

hold almost everywhere on I. Then the problem (1′), (4) has a unique solution.

The last two corollaries concern with the Cauchy problems (1), (5) and (1′), (5).

Corollary 6. Let t0 ∈ I and there exist a nonnegative integer m0, a natural number
m > m0, and α ∈]0, 1[ such that

ρim(t) ≤ αρim0
(t) for t ∈ I (i = 1, . . . , n), (32)

where

ρi0(t) ≡ 1 (i = 1, . . . , n),

ρij(t) =

n∑

k=1

∣∣∣∣∣∣

t∫

t0

`ik(ρkj−1)(s)ds

∣∣∣∣∣∣
(i = 1, . . . , n; j = 1, 2, . . . ).

Then the problem (1), (5) has a unique solution.

Proof. For every i ∈ {1, . . . , n} we define the following sequences of operators
ρij : C(I; Rn) → C(I; R):

ρi0(u1, . . . , un)(t)
def
= ui(t),

ρij(u1, . . . , un)(t)
def
=

n∑

k=1

∣∣∣∣∣∣

t∫

t0

`ik(ρkj−1(u1, . . . , un))(s)ds

∣∣∣∣∣∣
(j = 1, 2, . . . ).

Then for any (ui)
n
i=1 ∈ C(I; Rn),

ρij(u1, . . . , un)(t) = ρij−j0(ρ1j0(u1, . . . , un), . . . , ρnj0(u1, . . . , un))(t) (33)

(i = 1, . . . , n; j ≥ j0; j, j0 = 0, 1, 2, . . . )
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and

ρij(1, . . . , 1)(t) = ρij(t) (i = 1, . . . , n; j = 0, 1, 2, . . . ). (34)

Now let (yi)
n
i=1 be a solution of (10) satisfying the initial conditions

yi(t0) = 0 (i = 1, . . . , n).

Then for every nonnegative integer j,

|yi(t)| ≤ ρij(|y1|, . . . , |yn|)(t) (i = 1, . . . , n). (35j)

By (34) from (35m0
) we find

|yi(t)| ≤ ρim0
(t)

n∑

k=1

‖yk‖C (i = 1, . . . , n). (36)

Let for every i ∈ {1, . . . , n},

vi(t) =

{
0 if ρim0

(t) = 0,
|yi(t)|

ρim0
(t)

if ρim0
(t) 6= 0.

Then (36) yields

γi = ess sup{vi(t) : t ∈ I} < +∞ (i = 1, . . . , n)

and

|yi(t)| ≤ γiρim0
(t) = γiρim0

(1)(t) (i = 1, . . . , n),

whence by (32), (33) and (35m−m0
) for every i ∈ {1, . . . , n} we get

|yi(t)| ≤ ρim−m0
(|y1|, . . . , |yn|)(t) ≤

≤ γρim−m0
(ρ1m0

(1), . . . , ρnm0
(1))(t) =

= γρim(1)(t) = γρim(t) ≤ γαρim0
(t),

where γ = max{γ1, . . . , γn}. Hence we obtain

vi(t) ≤ αγ (i = 1, . . . , n)

and, consequently,

γ ≤ αγ.

Since α ∈]0, 1[, we have γ = 0, which implies yi(t) ≡ 0 (i = 1, . . . , n). Consequently,
the problem (1), (5) has a unique solution. 2

If m = 2, m0 = 1, then Corollary 6 yields the following result for the problem (1′),
(5):
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Corollary 6′. Let t0 ∈ I and α ∈]0, 1[ be such that

n∑

k=1

∣∣∣∣∣∣

t∫

t0

|pik(s)|

n∑

j=1

∣∣∣∣∣∣

τik(s)∫

t0

|pkj(ξ)|dξ

∣∣∣∣∣∣
ds

∣∣∣∣∣∣
≤ α

n∑

k=1

∣∣∣∣∣∣

t∫

t0

|pik(s)|ds

∣∣∣∣∣∣
for t ∈ I

(i = 1, . . . , n).

Then the problem (1′), (5) has a unique solution.

At the end of this subsection we give the examples verifying the optimality of the
above formulated conditions in the existence and uniqueness theorems.

Example 1. Let n = 2, λ1 ∈ [−1, 1[, λ2 ∈] − ∞,−1[∪]1, +∞[. On the segment
I = [0, 1] consider the system (1′) with the boundary conditions (3), where

p1k(t) =

{
δ1k(λ1 − 1) for 0 ≤ t ≤ 1

2

(1 − δ1k)(λ1 − 1) for 1
2

< t ≤ 1
(k = 1, 2),

p2k(t) =

{
δ2k(

λ2−1
λ2

) for 0 ≤ t ≤ 1
2

(1 − δ2k)(
λ2−1

λ2

) for 1
2

< t ≤ 1
(k = 1, 2),

τ11(t) ≡ τ21(t) ≡ 0, τ12(t) ≡ τ22(t) ≡ 1,

qi ∈ L(I; R), and ci ∈ R (i = 1, 2). Then all the assumptions of Corollary 3′ with
µ1 = 1, µ2 = |λ2|,

A =

(
1/2 1/2
1/2 1/2

)

are fulfilled except the condition (10) instead of which we have

r(A) = 1. (37)

On the other hand, the homogeneous problem

x′
i(t) =

2∑

k=1

pik(t)xk(τik(t)) (i = 1, 2), (38)

x1(1) = λ1x1(0), x2(1) = λ2x2(0) (39)

has the nontrivial solution

x1(t) = (λ1 − 1)t + 1, x2(t) =
λ2 − 1

λ2

t +
1

λ2

.

This example shows that the strict inequality (10) in Corollaries 3 and 3′ cannot
be replaced by the nonstrict one.
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Example 2. On the segment I = [a, b] consider the problem (1′), (4) with n ≥ 2,
constant coefficients pii(t) ≡ pii = −1, pik(t) ≡ pik = 1

n−1
(i 6= k; i, k = 1, . . . , n),

and τik : I → I (i, k = 1, . . . , n) arbitrary measurable functions. Then the vector
γ = (γi)

n
i=1 ∈ R

n, where γ1 = γ2 = · · · = γn 6= 0 satisfies the equality

Pγ = 0,

where P = (pik)
n
i,k=1, i.e., P has a zero eigenvalue. Thus all the assumptions of

Corollary 5′ are fulfilled with σi = 1, αi = |pii|, αik = (1 − δik)pik, (i, k = 1, . . . , n),
i.e., A = P , except the negativeness of real part of every eigenvalue of the matrix A.

On the other hand, the vector (γi)
n
i=1 is a nontrivial solution of the homogeneous

problem

x′
i(t) =

n∑

k=1

pikxk(τik(t)), xi(b) = xi(a).

This example shows that in Corollaries 5 and 5′ the requirement on the negativeness
of the real part of every eigenvalue of the matrix A cannot be weakened.

Example 3. Let I = [0, 1], t0 = 0, τik(t) ≡ 1 (i, k = 1, . . . , n)

pik(t) =

{
1 for t ∈ [k−1

n
, k

n
[

0 for t ∈ I \ [k−1
n

, k
n
[

(i, k = 1, . . . , n),

and consider the problem (1′), (5). Put

ρi0(t) ≡ 1, ρij(t) =

n∑

k=1

t∫

0

pik(s)ρij−1(τik(s))ds

(i = 1, . . . , n; j = 1, 2, . . . ).

Then
ρij(t) = t (i = 1, . . . , n; j = 1, 2, . . . )

and for every nonnegative integer m0 and every natural number m > m0 we have

ρim(t) ≤ ρim0
(t) for t ∈ I (i = 1, . . . , n).

On the other hand,
xi(t) = t (i = 1, . . . , n)

is a nontrivial solution of the homogeneous problem

x′
i(t) =

n∑

k=1

pik(t)xk(τik(t)), xi(t0) = 0.

The last example shows that in Corollaries 6 and 6′ we cannot choose α = 1.
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[13] I. Kiguradze and B. P̊uža: On boundary value problems for functional differential equations.

Mem. Differential Equations Math. Phys. 12 (1997), 106–113.

EJQTDE, 1999 No. 10, p. 16


